93 research outputs found

    Studies in the Lake Ontario Basin using ERTS-1 and high altitude data

    Get PDF
    Studies in the Lake Ontario Basin are designed to provide input for models of river basin discharge and macro-scale features of lake circulation. Lake studies appear to require high altitude imagery to record the dynamic features of Lake Ontario so that ERTS-1 data may be interpreted. Land area studies require input of soil moisture, land use and soil-sediment-geomorphology measurements some of which appear to be available, on a regional scale from ERTS-1 products

    Brewster-angle measurements of sea-surface reflectance using a high resolution spectroradiometer

    Get PDF
    This paper describes the design, construction and testing of a ship-borne spectroradiometer based on an imaging spectrograph and cooled CCD array with a wavelength range of 350-800 nm and 4 nm spectral sampling. The instrument had a minimum spectral acquisition time of 0.1 s, but in practice data were collected over periods of 10 s to allow averaging of wave effects. It was mounted on a ship's superstructure so that it viewed the sea surface from a height of several metres at the Brewster angle (53 degrees) through a linear polarizing filter. Comparison of sea-leaving spectra acquired with the polarizer oriented horizontally and vertically enabled estimation of the spectral composition of sky light reflected directly from the sea surface. A semi-empirical correction procedure was devised for retrieving water-leaving radiance spectra from these measurements while minimizing the influence of reflected sky light. Sea trials indicated that reflectance spectra obtained by this method were consistent with the results of radiance transfer modelling of case 2 waters with similar concentrations of chlorophyll and coloured dissolved organic matter. Surface reflectance signatures measured at three locations containing blooms of different phytoplankton species were easily discriminated and the instrument was sufficiently sensitive to detect solar-stimulated fluorescence from surface chlorophyll concentrations down to 1 mg m−3

    Proceedings of the 2022 Santa Fe Bone Symposium : Current concepts in the care of patients with osteoporosis and metabolic bone diseases

    Get PDF
    The 22nd Annual Santa Fe Bone Symposium (SFBS) was a hybrid meeting held August 5-6, 2022, with in-person and virtual attendees. Altogether, over 400 individuals registered, a majority of whom attended in-person, representing many states in the USA plus 7 other countries. The SFBS included 10 plenary presentations, 2 faculty panel discussions, satellite symposia, Bone Health & Osteoporosis Foundation Fracture Liaison Service Boot Camp, and a Project ECHO workshop, with lively interactive discussions for all events. Topics of interest included fracture prevention at different stages of life; how to treat and when to change therapy; skeletal health in cancer patients; advanced imaging to assess bone strength; the state of healthcare in the USA; osteosarcopenia; vitamin D update; perioperative bone health care; new guidelines for managing primary hyperparathyroidism; new concepts on bone modeling and remodeling; and an overview on the care of rare bone diseases, including hypophosphatasia, X-linked hypophosphatemia, tumor induced osteomalacia, osteogenesis imperfecta, fibrodysplasia ossificans progressiva, and osteopetrosis. The SFBS was preceded by the Santa Fe Fellows Workshop on Osteoporosis and Metabolic Bone Diseases, a collaboration of the Endocrine Fellows Foundation and the Osteoporosis Foundation of New Mexico. From the Workshop, 4 participating fellows were selected to give oral presentations at the bone symposium. These proceedings represent the clinical highlights of 2022 SFBS presentations and the discussions that followed, all with the aim of optimizing skeletal health and minimizing the consequences of fragile bones

    Retrieval of marine water constituents from AVIRIS data in the Hudson/Raritan Estuary

    Get PDF
    This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New Jersey-New York to retrieve accurate water leaving radiance spectra and chlorophyll concentration from the NASA Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data complemented with in situ measurements. The study area - Hudson/Raritan Estuary - is a complex estuarine system where tidal and wind-driven currents are modified by freshwater discharges from the Hudson, Raritan, Hackensack, and Passaic rivers. Over the last century the estuarine water quality has degraded, in part due to eutrophication, which has disrupted the pre-existing natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing oxygen demand and leading to episodes of hypoxia. During 1999-2001 data acquisitions by NASA AVIRIS field measurements were obtained to establish hydrological optical properties of the Hudson/Raritan Estuary: (1) concurrent above- and below-surface spectral irradiance; (2) sampling for laboratory determination of inherent optical properties; and (3) concentrations of optically-important water quality parameters. We used a bio-optical model based on Gordon et al. to predict the sub-surface irradiance reflectance from optically important water constituents. Modelling of reflectance is a prerequisite for processing remote sensing data to desired thematic maps for input into the geographical information system (GIS) for use as a management tool in water quality assessment. A Radiative Transfer Code - MODTRAN-4 - was applied to remove the effects of the atmosphere so as to infer the water leaving radiance from the AVIRS data. The results of this procedure were not satisfactory, therefore an alternative approach was tested to directly correct the AVIRIS image using modelled spectra based on measured optical characteristics. The atmospherically corrected AVIRIS ratio image was used to calculate a thematic map of water quality parameters (i.e. chlorophyll-a) concentration, which subsequently were integrated into a GIS for management of water quality purposes. © 2005 Taylor & Francis

    Internet of Things for Water Sustainability

    Get PDF
    The water is a finite resource. The issue of sustainable withdrawal of freshwater is a vital concern being faced by the community. There is a strong connection between the energy, food, and water which is referred to as water-food-energy nexus. The agriculture industry and municipalities are struggling to meet the demand of water supply. This situation is particularly exacerbated in the developing countries. The projected increase in world population requires more fresh water resources. New technologies are being developed to reduce water usage in the field of agriculture (e.g., sensor guided autonomous irrigation management systems). Agricultural water withdrawal is also impacting ground and surface water resources. Although the importance of reduction in water usage cannot be overemphasized, major efforts for sustainable water are directed towards the novel technology development for cleaning and recycling. Moreover, currently, energy technologies require abundant water for energy production. Therefore, energy sustainability is inextricably linked to water sustainability. The water sustainability IoT has a strong potential to solve many challenges in water-food-energy nexus. In this chapter, the architecture of IoT for water sustainability is presented. An in-depth coverage of sensing and communication technologies and water systems is also provided

    Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood

    Get PDF
    Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity— have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of ¹⁵N to ¹⁴N, termed δ¹⁵N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ¹⁵N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ¹⁵N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ¹⁵N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ¹⁵N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions

    Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective

    Get PDF
    Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and–despite increasing interest in large-river studies–riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river’s photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients

    Introduction to Environmental Remote Sensing

    No full text
    corecore